3.6.73 \(\int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\) [573]

3.6.73.1 Optimal result
3.6.73.2 Mathematica [A] (warning: unable to verify)
3.6.73.3 Rubi [A] (verified)
3.6.73.4 Maple [B] (verified)
3.6.73.5 Fricas [F]
3.6.73.6 Sympy [F]
3.6.73.7 Maxima [F]
3.6.73.8 Giac [F]
3.6.73.9 Mupad [F(-1)]

3.6.73.1 Optimal result

Integrand size = 23, antiderivative size = 317 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 \left (a^2+3 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^2 (a+b)^{3/2} d}+\frac {2 (a-3 b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b (a+b)^{3/2} d}+\frac {2 a \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (a^2+3 b^2\right ) \tan (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

output
2/3*(a^2+3*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(( 
a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b) 
)^(1/2)/(a-b)/b^2/(a+b)^(3/2)/d+2/3*(a-3*b)*cot(d*x+c)*EllipticF((a+b*sec( 
d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1 
/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/(a-b)/b/(a+b)^(3/2)/d+2/3*a*tan(d*x+c) 
/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)+2/3*(a^2+3*b^2)*tan(d*x+c)/(a^2-b^2)^2 
/d/(a+b*sec(d*x+c))^(1/2)
 
3.6.73.2 Mathematica [A] (warning: unable to verify)

Time = 11.18 (sec) , antiderivative size = 486, normalized size of antiderivative = 1.53 \[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {(b+a \cos (c+d x))^3 \sec ^3(c+d x) \left (-\frac {2 \left (a^2+3 b^2\right ) \sin (c+d x)}{3 b \left (-a^2+b^2\right )^2}+\frac {2 b \sin (c+d x)}{3 \left (-a^2+b^2\right ) (b+a \cos (c+d x))^2}+\frac {4 \left (a^2 \sin (c+d x)+b^2 \sin (c+d x)\right )}{3 \left (-a^2+b^2\right )^2 (b+a \cos (c+d x))}\right )}{d (a+b \sec (c+d x))^{5/2}}+\frac {2 (b+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x) \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 \left (a^3+a^2 b+3 a b^2+3 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-2 b \left (a^2+4 a b+3 b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+\left (a^2+3 b^2\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b \left (a^2-b^2\right )^2 d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} (a+b \sec (c+d x))^{5/2}} \]

input
Integrate[Sec[c + d*x]^2/(a + b*Sec[c + d*x])^(5/2),x]
 
output
((b + a*Cos[c + d*x])^3*Sec[c + d*x]^3*((-2*(a^2 + 3*b^2)*Sin[c + d*x])/(3 
*b*(-a^2 + b^2)^2) + (2*b*Sin[c + d*x])/(3*(-a^2 + b^2)*(b + a*Cos[c + d*x 
])^2) + (4*(a^2*Sin[c + d*x] + b^2*Sin[c + d*x]))/(3*(-a^2 + b^2)^2*(b + a 
*Cos[c + d*x]))))/(d*(a + b*Sec[c + d*x])^(5/2)) + (2*(b + a*Cos[c + d*x]) 
^2*Sec[c + d*x]^(5/2)*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(a^3 + a^2* 
b + 3*a*b^2 + 3*b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos 
[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2] 
], (a - b)/(a + b)] - 2*b*(a^2 + 4*a*b + 3*b^2)*Sqrt[Cos[c + d*x]/(1 + Cos 
[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipt 
icF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (a^2 + 3*b^2)*Cos[c + d*x 
]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b*(a^2 - b 
^2)^2*d*Sqrt[Sec[(c + d*x)/2]^2]*(a + b*Sec[c + d*x])^(5/2))
 
3.6.73.3 Rubi [A] (verified)

Time = 1.15 (sec) , antiderivative size = 336, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 4323, 27, 3042, 4491, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4323

\(\displaystyle \frac {2 \int -\frac {\sec (c+d x) (3 b-a \sec (c+d x))}{2 (a+b \sec (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}+\frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\int \frac {\sec (c+d x) (3 b-a \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 b-a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4491

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {-\frac {2 \int -\frac {\sec (c+d x) \left (4 a b+\left (a^2+3 b^2\right ) \sec (c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (a^2+3 b^2\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\int \frac {\sec (c+d x) \left (4 a b+\left (a^2+3 b^2\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (a^2+3 b^2\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (4 a b+\left (a^2+3 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (a^2+3 b^2\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\left (a^2+3 b^2\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-(a-3 b) (a-b) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (a^2+3 b^2\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\left (a^2+3 b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-3 b) (a-b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (a^2+3 b^2\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {\left (a^2+3 b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{a^2-b^2}-\frac {2 \left (a^2+3 b^2\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {2 a \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {\frac {-\frac {2 (a-b) \sqrt {a+b} \left (a^2+3 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{a^2-b^2}-\frac {2 \left (a^2+3 b^2\right ) \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}\)

input
Int[Sec[c + d*x]^2/(a + b*Sec[c + d*x])^(5/2),x]
 
output
(2*a*Tan[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) - (((-2*(a 
 - b)*Sqrt[a + b]*(a^2 + 3*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*S 
ec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a 
 + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*(a - 3*b)*(a 
- b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sq 
rt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-(( 
b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))/(a^2 - b^2) - (2*(a^2 + 3*b^2)*Tan 
[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]))/(3*(a^2 - b^2))
 

3.6.73.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4323
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), 
x_Symbol] :> Simp[a*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*( 
a^2 - b^2))), x] - Simp[1/((m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b*C 
sc[e + f*x])^(m + 1)*(b*(m + 1) - a*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[ 
{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 

rule 4491
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e 
 + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1 
/((m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp 
[(a*A - b*B)*(m + 1) - (A*b - a*B)*(m + 2)*Csc[e + f*x], x], x], x] /; Free 
Q[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m 
, -1]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 
3.6.73.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3000\) vs. \(2(287)=574\).

Time = 4.99 (sec) , antiderivative size = 3001, normalized size of antiderivative = 9.47

method result size
default \(\text {Expression too large to display}\) \(3001\)

input
int(sec(d*x+c)^2/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
2/3/d/(a-b)^2/(a+b)^2/b*((1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a 
+b))^(1/2))*a^3*b*cos(d*x+c)^3+4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)) 
^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),( 
(a-b)/(a+b))^(1/2))*a^2*b^2*cos(d*x+c)^3+3*(1/(a+b)*(b+a*cos(d*x+c))/(cos( 
d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-cs 
c(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3*cos(d*x+c)^3-(1/(a+b)*(b+a*cos(d*x+c)) 
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x 
+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*b*cos(d*x+c)^3-3*(1/(a+b)*(b+a*cos 
(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE 
(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2*cos(d*x+c)^3-3*(1/(a+b 
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^3*cos(d*x+c)^3-6 
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1 
))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^4*cos(d*x+ 
c)-3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+ 
c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^4*cos( 
d*x+c)^2+2*a^3*b*cos(d*x+c)^2*sin(d*x+c)-3*a^2*b^2*cos(d*x+c)^2*sin(d*x+c) 
+2*a*b^3*cos(d*x+c)^2*sin(d*x+c)-3*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/ 
(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c...
 
3.6.73.5 Fricas [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2/(b^3*sec(d*x + c)^3 + 3*a 
*b^2*sec(d*x + c)^2 + 3*a^2*b*sec(d*x + c) + a^3), x)
 
3.6.73.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(sec(d*x+c)**2/(a+b*sec(d*x+c))**(5/2),x)
 
output
Integral(sec(c + d*x)**2/(a + b*sec(c + d*x))**(5/2), x)
 
3.6.73.7 Maxima [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)^2/(b*sec(d*x + c) + a)^(5/2), x)
 
3.6.73.8 Giac [F]

\[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^2/(b*sec(d*x + c) + a)^(5/2), x)
 
3.6.73.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(1/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)),x)
 
output
int(1/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)), x)